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CAPACITANCE A

A capacitor is a device that stores energy; energy thus stored can either be associated

with accumulated charge or it can be related to the stored electric field.

6.1 Capacitance Defined

Consider two conductors embedded in a homogeneous dielectric. Conductor M carries a
total positive charge Q, and M; carries an equal negative charge. There are no other charges

present, and the total charge of the system is zero.

Let us designate the potential difference between M, and M; as Vy. We may now define the
capacitance of this two-conductor system as the ratio of the magnitude of the total charge on
either conductor to the magnitude of the potential difference between conductors

In general terms, we determine Q by a surface integral over the positive conductors, and

we find V, by carrying a unit positive charge from the negative to the positive surface,

_ $eE.dS
—[TE.dL

The capacitance is independent of the potential and total charge, for their ratio is constant.
If the charge density is increased by a factor of N, Gauss’s law indicates that the electric flux
density or electric field intensity also increases by N, as does the potential difference. The
capacitance is a function only of the physical dimensions of the system of conductors and of the

permittivity of the homogeneous dielectric

Capacitance is measured in farads (F), where a farad is defined as one coulomb per volt
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6.2 Parallel-Plate Capacitor

We can apply the definition of capacitance to a simple two-conductor system in which the
conductors are identical, infinite parallel planes with separation d (Figure below). Choosing the
lower conducting plane at z = 0 and the upper one at z = d, a uniform sheet of surface charge pg

on each conductor leads to the uniform field

Ps
E=—a,
& Uniform surface /

charge density

Conductor surface Jf- —Pg J
/ n,

M,
where the permittivity of the dielectric is ¢,

\ n;
- .\\ b2
Conductor surface v Ps z=1)

D = p;a,

The potential difference between lower and upper planes is

lower 0
V= f E.dlL=—-|2a:=24
& &

upper d

Since the total charge on either plane is infinite, the capacitance is infinite. A more practical
answer is obtained by considering planes, each of area S, whose linear dimensions are much

greater than their separation d.

Q=psS
_Q _psS
“TV, by

&
C_SS
d

Example: Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, &,= 6,

a plate area of 10 cm?, and a separation of 0.01 cm.?
Solution:

€S g& S 885x10712x6Xx 10

¢ d d 0.01

= 53.1nF
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6.3 Multiple-Dielectric Capacitors

When two dielectrics are present in a capacitor with the interface normal to E and D, as
shown in Figure below, the equivalent capacitance can be obtained by treating the arrangement

as two capacitors in series

C = 1 _ C1 * CZ / Area, § //
1.1 6+¢ - 4
Cl CZ . ) d! /

Conducting d y
lates '

. e, S plates N d, //

1= d1 )
& S
C, = ——
2 dz

When two dielectrics are present in a capacitor with the interface parallel to E and D, as
shown in Figure below, the equivalent capacitance can be obtained by treating the arrangement

as two capacitors in parallel

C=C+C,
& 51
C, =
17 d
& 5,
C, =
z d
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Example: A parallel-plate capacitor with area 0.30 m? and separation 5.5 mm contains three

dielectrics with interfaces normal to E and D, as follows: &.; = 3, d; = 1mm; &, = 4,

d; =2mm; g5 = 6, d3 = 2.5 mm. Find the capacitance?

Solution:
1 1 1 1

AN

&1 S erleoS

G=ur T g
3x8.85x 10 1% x 0.3
1= = =7.96 nF
10
C. = &y S _ Srzsos
2T dy,  dy
4x%885x10" x0.3
2 = = = 5.31nF
2% 10
C. = &3 S _ Srgsos
T d3 ds
6x885x%x10 % x0.3
3= = = 6.37 nF
10
1 1 1 1

= + +
Cr  7.96x107° " 531x 1079 ' 6.37 x 1079

Cr =2.12nF
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6.4 Capacitance of coaxial cable or coaxial capacitor

We choose a coaxial cable or coaxial capacitor of inner radius a, outer radius b, and length L

a
D = psd a,
T
<’) 3
psa b ]
E = a,
ET L
a —.
psa ;
Vap = — | —a,.dra /7
ab f er T T >,
b

and the voltage difference between the conductors is

a b
Vab = p;_lna

The total charge on the inner conductor is

Q = ps(2mal)
_Q

7

= 2mel
" In(b/a)

Example: Find the capacitance between the inner and outer curved conductor surfaces shown in

Figure below?

Solution: e, =55
30°~
2mel 3 o
= (b for coaxil capacitor ( ‘1 ’ .
n(b/a) | A
P 2melL, . 1 _ L/’:«"’ ot
=— — t -
27 (/@) for a part of coaxil capacitor Sg o

T
oo e _ 30° X 755 5.5%8.85x 10712 x 60 x 1073 _ € 86 PF
~1 In/a) 1 In(25/20) -
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6.5 Spherical Capacitor

Consider a spherical capacitor formed of two concentric spherical conducting shells of
radius a and b, b > a. The expression for the electric field was obtained previously by Gauss’s

law

Q
E = a
4mer? T _ _ o o _
where the region between the spheres is a dielectric with permittivity € . The expression for

potential difference was found from this by the line integral.

Thus,

Q1
Vab—@(a‘z)

Here Q represents the total charge on the inner sphere, and the capacitance becomes

If we allow the outer sphere to become infinitely large, we obtain the capacitance of an isolated

spherical conductor

C = 4mea

Example: Find the capacitance between the inner (r=2) and outer (r=3) sphere conductor

surfaces if e, = 2.57?
Solution:

dme  4mepe,  4mx8.85x 1072 x 2.5

C=l_l=1 1 = 1.66 nF
a b

a b

N =
|
W] =
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6.6 Energy Stored in a Capacitor

The total energy stored in the capacitor is

S

we=d [eran=1f [2
E_Z & 17—2

0

vol

pid?
82

&\‘o
m
N
&
N
Q.
975
[l
|
B
Q
N =
| &

11
Weg =50V =50V =

N| =
o

Example: Find the relative permittivity of the dielectric material present in a parallel-plate
capacitor if: () S = 0.12m?, d = 80 um, V, = 12 V, and the capacitor contains 1uJ of
energy; (b) the stored energy density is 100 J/m® Vo = 200 V, and d = 45um;
(c) E = 200 kV/m and p;= 20uC/m?*?

Solution:

L
(@) Wg ZEC‘/O

1
1x 1076 = E6(12)2 = C = 13.88nF

eS &¢&S
C:—:
d d

Cd 13.88x1072x80x10°°
& = = — = 1.05
g S 8.85 x 10-12 x 0.12

(b) W =100 X 0.12 X 45 X 107 = 540 uJ

2W  2x540 x10°°

_ 27 _ = 27 nF
V,2 (200)2 n

_Cd_27><10‘9><80><10‘6_114
T S  885x10-12x012

Ps Ps 20 x 107°

E = = =
©E= 0 T e E 885x10-12 x 200 x 10°
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6.7 Poisson’s and Laplace’s Equations

An alternate approach would be to start with known potentials on each conductor, and
then work backward to find the charge in terms of the known potential difference. The

capacitance in either case is found by the ratio Q/V.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of Gauss’s law

V.D =p,
E=-VV
by substitution we have

V.D =V.(eE) = =V.(eVV) = p,

V.V = P
&
vey = - 2¢
&

Equation above is Poisson’s equation,

If p, = 0, indicating zero volume charge density, but allowing point charges, line charge,

and surface charge density to exist at singular locations as sources of the field, then
ViV =0
which is Laplace’s equation. The V? operation is called the Laplacian of V.

L9 9V 9%

2
VS B R

( Cartesian)

VZV_l(’)(aV)_I_l 0%V +62V .
=% pap FAVTE 552 ( cylindrical)

|72V—1 6(26V)+ 1 6(_ 96V)+ 1 9%V .
~r29r\' or) r2sinfog\ "~ 86/ rZsin?0op? {epinateel)
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6.8 Examples of The Solution of Laplace’s Equation

Several methods have been developed for solving Laplace’s equation. The simplest method
is that of direct integration. We will use this technique to work several examples involving one-

dimensional potential variation in various coordinate systems in this section.

The necessary steps are these, after the choice of boundary conditions has been made:
1. Given V, use E =-VV to find E.
2.Use D = ¢E to find D.
3. Evaluate D at either capacitor plate, D = DS = Dy a.
4. Recognize that p;= Dy.

5. Find Q by a surface integration over the capacitor plate, Q = fs ps dS

e Vs a function only of x:
Laplace’s equation reduces to
vy =0
0%V

0x?
and the partial derivative may be replaced by an ordinary derivative, since V is not a

function of y or z,

dzv

=

We integrate twice, obtaining
v_,

dx

V=Ax+B

where A and B are constants of integration
Example: Find the capacitance of a parallel-plate capacitor of plate area S, plate separation d,
and potential difference Vy between plates?

Solution:

v

dz?

V=A4z+B
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V=0atZ=0
0=A4(0)+B , ~B=0
V =Az
V=V,atZ=d
Vo
=A A=—
VO d ) d
V
V=="2z
d
av Vo
E=—VV=—£aZ— Eaz
Vo
D_€E=—732
Vo
ps =Dy =——=
Vo VS
Q—J—Psd5=f—7 S=——
_Q_eS
C=y=13

e V as a function of p

Laplace’s equation becomes

10/ ov
7957 50) =
Noting the 0 in the denominator, we exclude p = 0 from our solution and then multiply by
p and integrate

dv
p % =

where a total derivative replaces the partial derivative because V varies only with p. Next,

A

rearrange, and integrate again,

V=Alnp +B

89



DATE / /2013 Cagacitance Lecturer: Mohammed Kamil Salh

Example: Find the capacitance of the coaxial capacitor or coaxial transmission line?

Solution:
V=Alnp +B
V=0 atp=>»b
0=Alnb + B conductor
&~ B=—-Alnb
V=Alnp —Alnb =A1n%
V=V, atp=a
V0=Aln%
vV
A:—Oa
lnB
Voln%
V= q
lnE
E=-w=21
= — = — a
P]né P
a
D eVy 1
=eFf =— a
p lné P
a
_ eVy 1
Ps = N_7lnéap
Q=jpsd5
L 277:£V0 1
szf —— pdddz
o Jo In=
_ 2mLeVy
In—
Q 2mlLe
oo @In
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e V as a function of @ in cylindrical coordinates

Capacitance

Laplace’s equation is now

1 [/0%V
22\a92) = ©

We exclude p = 0 and have

d?v B
dp?
The solution is

V=A0+B

Lecturer: Mohammed Kamil Salh

Example: In cylindrical coordinates two @ = const, planes are insulated along the z axis, as

shown in Fig. 8-9. Neglect fringing and find the expression for E between the planes,

assuming a potential of 100 V for @ = a, and a zero reference at @ =07?

Solution:
V=A0+B
V=0 at®d=0
0= A4(0) + B
~B=0

V=A0

V=100 at =«
100 = Aa

100
A=—
a
100
V=—-1020
a
—10v
E=—VV=—-5a

91
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Example: In the capacitor shown in Figure below, the region between the plates is filled with a

dielectric having &,= 4.5. Find the capacitance?

Solution: iz

From example above

—100
E = dg
pa
—100¢e
D =¢E = ag
pa y
—100¢e
ps =D = pa ag
0.005 ~0.03 —100¢
Q= jpsds —j j dp dz
0.001
1006

30
x 0.005 lnT

Q_ Q _0017¢ 0017 x4.5x8.85x 1072
_ = 7.76 PF

V100  « 5xm/180

e V as a function of @in Spherical coordinates

Laplace’s equation is now

1 0 av
(sm 0 —) =0

r2sinf 00 00

We excluder=0and ¢ =0or ~ and have
0 av =A

sin d9 =

The second integral is then

[
~ J siné@

2]
V =Aln<tan5> + B
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Example: Solve Laplace's equation for the region between coaxial cones, as shown in Figure
below. A potential V, is assumed atf,, and VV = 0 at 8,. The cone vertices are insulated
atr =07 (b) let 6; = 10°, 6,=30°, and V1 = 100V. Find the voltage at 6 = 20°, At what
angle @ is the voltage 50 VV?

Solution: 8
6
V= Aln(tanz) + B

V=0 at 6=6,

0, 0,
0=A1n<tan7)+B , & B=—Aln<tan7)
V=Al <t 9) Al (t 62)

=Aln an2 n an2

V:V1 at 9:91

V, = Al (t 01) Al (t 02) = A [l (t 91) l(t 92)]
1= n anz n anz = n anz n anz

Vi

In (tan %) —1In (tan %)

A=
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Home work

Q1: In the cylindrical capacitor shown in Fig. below each dielectric occupies one-half the
volume. Find the capacitance?

Q2: The coaxial cable in Fig. below has an inner conductor radius of 0.5 mm and an outer

conductor radius of 5 mm. find the capacitance per unit length with spacers as shown.

€ = 5.5 fﬂ

O 91— Ans: 45.9 PF/m

10 mm
L—SD mm—»l

Qs: A parallel-plate capacitor has its dielectric changed from &,.; = 2.0 to ¢,, = 6.0. It is noted

that the stored energy remain fixed: W, = W;. Examine the changes, if any, in V, C, D, E, Q,
and ps?

Q4: Find the capacitance between the two cones of Fig. below. Assume free space?

Im ’{
- "=
= 30°

\L Ans: 12.28¢,

Qs: A parallel-plate capacitor of 8nF has an area 1.51 m? and separation 10 mm. What separation

would be required to obtain the same capacitance with free space between the plates?

Ans: 1.67 mm
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